• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Search on the site

  • About us
    • Governance
    • Team of Facilities
  • How to find us
  • Contact us
  • For you patient
  • EN
  • IT
gemelli generator logo

GemelliGenerator

  • Facilities
    • Epidemiology & Biostatistics
    • Data Collection
    • Bioinformatics
    • Real World Data
  • Services
  • Research
    • Projects
    • Network Projects
    • Publications
  • Opportunity
    • Work with us
    • Courses
  • Network & Partners
  • News & Events
Home / Projects / Morphonode Predictive Model

Morphonode Predictive Model

Principal Investigator:

In Collaboration with: Dipartimento Scienze della salute della donna, del bambino e di sanità pubblica

Researchers involved:

Dr. Fernando Palluzzi, Dr. Luciano Giaco’, Ing. Tina Pasciuto, Dr.ssa Iolanda Mozzetta

Target:

The Morphonode Predictive Model (https://github.com/Morphonodepredictivemodel) is an ensemble methodology for the prediction of inguinal lymph node metastasis before surgery. The R-based package is composed by four modules, including: random forest classifiers (Morphonode-RFC) for malignancy prediction, robust binomial regression (Morphonode-RBM) for malignancy risk estimation, decision trees (Modphonode-DT) for the detection of signatures of malignancy risk and metastasis frequency, and a function for similarity profiling (Morphonode-SP) to search for patients with similar ultrasound characteristics, risk level and signature. This ensemble method revealed a higher performance than subjective assessment (93.3% vs. 76.4% of predictive accuracy, respectively) and high robustness to missing data, demonstrating the key importance of computational approaches in personalized medicine and surgery.

Publications:

Garganese G, Fragomeni SM, Pasciuto T, Leombroni M, Moro F, Evangelista MT, Bove S, Gentileschi S, Tagliaferri L, Paris I, Inzani F, Fanfani F, Scambia G,Testa AC. Ultrasound morphometric and cytologic preoperative assessment of inguinal lymph-node status in women with vulvar cancer: MorphoNode study. Ultrasound Obstet Gynecol. 2020 Mar;55(3):401-410. doi: 10.1002/uog.20378. PMID:31237047.

Primary Sidebar

Search

Our facilities

  • Epidemiology & Biostatistics
  • Data Collection
  • Bioinformatics
  • Real World Data

Latest from Gemelli Generator

  • 26/07/2022
    Azimuth, un percorso di digital health integrato per i pazienti con insufficienza cardiaca
  • 29/11/2021Events
    IL RUOLO DELLA BIOINFORMATICA NELLA RICERCA CLINICA: EVIDENZE E NUOVE PROSPETTIVE.
  • News
    25/10/2021Research
    L'intelligenza artificiale e la bellezza della guarigione
  • News
    09/09/2021Video
    Sanità. L'uso dell'Intelligenza artificiale nei servizi sanitari. Intervista al Prof. Vincenzo Valentini

Courses

Discover our courses

Need help?

Please use the form below based on your specific needs

Contact Us

Footer

  • Facilities
    • Epidemiology & Biostatistics
    • Data Collection
    • Bioinformatics
    • Real World Data
  • Services
  • Research
    • Projects
    • Network Projects
    • Publications
  • Opportunity
    • Work with us
    • Courses
  • Network & Partners
  • News & Events
  • About us
    • Governance
    • Team of Facilities
  • How to find us
  • Contact us
  • For you patient

Privacy information

Cookie Policy

Note

Usage conditions


Support us
gemelli generator footer
logo facebook
logo twitter
logo youtube
logo linkedin
logo policlinico gemelli
logo cattolica

© 2020 Fondazione Policlinico Universitario Agostino Gemelli IRCCS
Codice Fiscale e P.IVA n. 13109681000

 

Sede Legale Largo Francesco Vito 1, 00168 Roma
Sede Operativa Largo Agostino Gemelli 8, 00168 Roma
Tutti i diritti riservati / All Rights Reserved – Credits